
SWARM: A path forwards to exascale
Chris Lauderdale Rishi Khan

ET International, Inc.

1 Introduction
The requirements that will be imposed on computing hardware and software at exascale are far more

restrictive than those that are imposed on present-day systems. Exascale software will need to be able
to quickly express a very high degree of parallelism in order to use many CPU cores effectively; however,
creating and maintaining operating-system-provided software threads makes it difficult to support a threaded
execution model going forward. Furthermore, the high likelihood of hardware failure in exascale systems
means that software will have to handle sudden component disappearance or configuration change. There
will be a much greater degree of on-chip component heterogeneity (failure-related and in-built) in exascale
systems, and optimal use of these systems will require load-balancing between these components [15].

Because maintenance of cache coherence amongst n caches requires O(n2) communication, present-day
methods of mitigating memory latency will be nearly impossible, and it is likely that available memory will
be broken up into non-uniform areas of varying locality to each executing core [11]; this conflicts directly
with the assumption made by most present-day software that there is a quickly accessible uniform address
space.

2 Overview of SWARM
SWARM (SWift Adaptive Runtime Machine) is a platform- and architecture-agnostic software runtime

system that implements a new execution model in a layer between the operating system and application.
It manages available hardware and software resources (e.g., threads, memory, accelerators, and networking)
and dynamically assigns applications’ work and data to these resources as they become available, helping to
maximize resource usage without needing to know a priori what specific resources are available. SWARM
views all application-generated work in terms of codelets, which are small, discrete pieces of code that can
run to completion in a finite amount of time without blocking or engaging in any long-latency operations.

SWARM manages application data using an object-oriented type system that provides it with a descrip-
tion of type hierarchies, data layout, and construction, destruction, copying, serialization, and deserialization
methods. All non-transient data used by codelets are viewed in terms of objects, to enable SWARM to au-
tomatically push and pull references, interface stubs, or entire objects between execution domains without
application assistance.

Stored data and executing work are bound to particular locales within SWARM, which are related by a
tree-like hierarchy with each locale possessing a scheduler and allocator to manage collective time and space,
respectively, for that locale and its descendants in the hierarchy. The root (highest-level) locale refers to the
entire distributed runtime and leaf (lowest-level) locales are used to manage specific threads or otherwise
indivisible hardware components. The locale tree provides communications endpoints for routing application
work and data, and is used by the runtime to assist with load-balancing.

3 Related work
The basis for SWARM’s execution model comes from dataflow-related work by Gao et al. on the pro-

totypical EARTH runtime [17] and later extensions to its execution model for exascale [19]. SWARM’s
model discards some of the theoretical limitations imposed on the earlier model and adds cancellation and
continuation-passing semantics.

Other more commonly used frameworks for creating parallel and distributed software include MPI [9] and
SHMEM [3] to effect multi-node distributed systems, OpenMP [6], Cilk [4], and TBB [14] for parallelizing
code within a single node’s homogeneous threads, and OpenCL [16], CUDA [13], and DirectCompute to
enable use of heterogeneous components. Unfortunately, each of these runtimes fulfills specific roles only,
and they do not tend to interoperate well (especially with regard to thread-safety). Prior work also includes
ParalleX [10], which is an execution model specification for which HPX [1] exists as an implementation.

SWARM’s locale hierarchy is closely related to the Hierarchical Place Trees (HPTs) used by the Habanero
runtime [18], “places” in the X10 language [7], and locales in the Chapel language [5], as well as the Sequoia
language’s Parallel Memory Hierarchy (PMH) [8], although SWARM’s locales are exposed to applications
and used for collective management of both scheduling and memory management.

4 Assessment of SWARM
4.1 Challenges addressed

SWARM is designed to enable an application to rapidly expose a very high degree of parallelism
quickly, provide a basis for dealing with hardware failures and heterogeneity, and decouple data from
particular locations so that complex memory hierarchies can be managed.

Because application-generated work is described in terms of codelets rather than stacks and threads,
SWARM can perform useful work as soon as both work and an appropriate hardware component to per-
form it are ready. Because no context switching or operating system interactions are needed to switch
between or manage codelets, SWARM can quickly reuse threads between codelet executions, mitigating
latency from long-running background operations. Codelets also offer a convenient means of dealing with
hardware failures, as they offer obvious data synchronization points and minimize the amount of location-
bound data. Codelets can also be used to deal well with heterogeneity; binary and data-structural differences



can be dealt with by providing multiple binary forms for codelets and using runtime-assisted object serial-
ization/deserialization.

SWARM also offers a way to sidestep the application-level difficulties imposed by use of a deep, non-
uniform memory hierarchy by managing locality and data transfer internally. Its type system enables it
to reason about how data should be (de-)serialized and copied, which enables much more complete and
transparent mobility of application components.
4.2 Maturity

SWARM has been applied to diverse problems such as Graph500 [12], tiled linear algebra, Barnes-Hut [2],
and n-queens, and has been selected for development under the DOE XStack project (contract pending).
At present, SWARM supports parallel heterogeneous programming by integrating Pthreads and runtime-
managed OpenCL hooks, and can dynamically load-balance by migrating codelets amongst available CPUs
and GPUs. SWARM also supports networking between individual hosts’ runtimes, although data and work
migration across host boundaries are still explicitly application-directed.

Overall, SWARM is still in a relatively early stage of maturity; data migration has been addressed only
minimally, and further research will be needed before integrating fault tolerance or more extensive power
management features. More high-level programming language development must also be done for SWARM
to establish as simpler programming interface for defining codelets and describing data types.
4.3 Uniqueness and novelty

Existing runtimes and frameworks typically focus on one or two small problem areas in which to assist
programs. However, since future supercomputing programs will need support for multithreading, multi-node
data and work distribution, and support for heterogeneous compute elements, SWARM aims to establish a
single unified framework for creation and execution of parallel programs.

The SWARM framework is DAG-based, and is concerned primarily with allowing the application to
express what can be done at any given time, so that the runtime can determine what should be done in the
present. This stands in direct contrast to most other high-performance frameworks, which typically use an
imperative interface that allows an application to express what work must be done in the present, while the
application waits for the work to complete. Even other DAG-based runtimes typically require dependencies
between application components to be declared at compile time or program startup, which works well only
for a fairly small class of programs.

Although other frameworks such as Cilk or OpenMP can handle distinct forms of multithreaded paral-
lelization (typically fork/join-style since it meshes well with existing execution models), SWARM supports
recursive, bulk-synchronous, producer-consumer, streaming, and graph-traversal programs well; it reduces
all parallelization to primitives that notify the runtime of work being available, then allows higher-level
constructs to be used on top of those primitives. Other frameworks typically build parallelization around
primitives with specific purposes that restrict the kinds of problem class for which the frameworks are
appropriate.
4.4 Applicability

One of the design goals of SWARM was to establish a unified computing model as the basis for many
different application types, not just exascale programs. Traditionally, fork/join-based models have been
most popular since they can be overlaid on software threads without much work; Cilk and OpenMP are
two frameworks that provide support for recursion-based and bulk-parallel fork/join models, respectively.
However, these models are less appropriate for imbalanced or flow-based workloads, such as many physical
simulations, graph algorithms, or streaming applications, which typically use a special-purpose DAG-like
model to manage workflow. SWARM provides a model that can be used to implement all of the above
schemes in a scalable, low-overhead fashion.

SWARM is designed to be platform- and architecture-agnostic, so it is portable to many different kinds
of computing system from embedded platforms to supercomputers. This allows applications and application
components to be written and reused in vastly different situations, and allows programs to be scaled up or
down dramatically, or distributed widely or locally, without loss of functionality or need for modification.
4.5 Usability

The primary difficulties in using SWARM stem from its execution model and type system. Because
SWARM and SWARM software are currently programmed in C, each codelet fork must be established as a
separate C function, referenced indirectly by the codelet’s data structure in memory. Breaking up program
flow like this is unnatural for most programmers, and can be difficult to master. SWARM’s type system
is applied to C data structures, and must rely on hand-coded metadata structures to enable SWARM to
inspect or operate upon objects. Casting and coercing between object-oriented types must also be done by
hand, since C itself won’t adjust pointers correctly. These problems are largely cosmetic, and to circumvent
them, ETI is developing SCALE (SWARM Codelet Association Language Extensions), which constitutes a
set of language extensions to C that simplify creation of, and interaction with, codelets and SWARM’s type
system.

5 Conclusion
Reaching exascale cannot simply be a matter of continuing present-day practices and expecting them to

work at massively different scales. In order to overcome the problems that are currently being experienced
and that will be experienced as the exascale is approached, SWARM establishes a new execution model and
software runtime layer to help software express a high degree of parallelism, simplify use of heterogeneous
components, manage data and work migration, and provide a basis for hardware fault tolerance.



References
[1] M. Anderson, M. Brodowicz, H. Kaiser, and T. Sterling. An application-driven analysis of the ParraleX

execution model. Technical report, Louisiana State University, Baton Rouge, LA, USA, Sep. 2011.

[2] J. Barnes and P. Hut. A hierarchical O(n lg n) force-calculation algorithm. In Nature, 324(6096):446–
449, Dec. 1986.

[3] R. Barriuso and A. Knies. SHMEM user’s guide for C. Cray Research, Inc., Eagan, MN, USA, June
1994.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. SIGPLAN Not., 30:207–216, August 1995.

[5] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the Chapel language.
IJHPCA, 21(3):291–312, 2007.

[6] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable shared-memory parallel program-
ming. The MIT Press, 2007.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: An object-oriented approach to non-uniform cluster computing. In OOPSLA ’05,
pages 519–538, New York, NY, USA, 2005. ACM.

[8] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez, M. Ren, A. Aiken,
W. J. Dally, and P. Hanrahan. Sequoia: Programming the memory hierarchy. In Proceedings of the
2006 ACM/IEEE conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[9] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press, 2nd edition, Nov. 1999

[10] H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX: An advanced parallel execution model for scaling-
impaired applications. ICPPW, pages 394–401, Sep. 2009.

[11] P. Machanick. Approaches to addressing the memory wall. Technical report, University of Brisbane,
Brisbane, QLD, Australia, 2002.

[12] R. C. Murphy, K. B. Wheeler, B. W. Barrett, J. A. Ang. Introducing the Graph 500. Cray User’s
Group (CUG), May 5, 2010.

[13] NVIDIA Corporation, Santa Clara, CA. NVIDIA CUDA programming guide, June 2007.

[14] J. Reinders. Intel Threading Building Blocks. O’Reilly Media, Sebastopol, CA, July 2007.

[15] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technology challenges. In VECPAR 2010,
volume 6449 of Lecture Notes in Computer Science, pages 1–25. Springer Berlin/Heidelberg, 2011.

[16] J. E. Stone, D. Gohara, G. Shi. OpenCL: A parallel programming standard for heterogeneous comput-
ing systems. Computing in Science & Engineering, 12(3):66–72, May 2010.

[17] K. B. Theobald. EARTH: An efficient architecture for running threads. PhD thesis, McGill University,
Montreal, Que., Canada, 1999.

[18] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical Place Trees: A portable abtraction for task
parallelism and data movement. In Proceedings of the 22nd Workshop on Languages and Compilers
for Parallel Computing, Oct. 2009.

[19] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Position paper: Using a “codelet”
program execution model for exascale machines. In EXADAPT ’11, New York, NY, USA, June 2011.
CAPSL, ACM.


